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Introduction and Historical Summary.

I their efforts to place mathematical analysis on the firmest possible foundations,
AsEr and Cavucuy found it necessary to banish non-convergent series from their
work ; from that time until a quarter of a century ago the theory of divergent series
was, in general, neglected by mathematicians.

A consistent theory of divergent series was, however, developed by PoINCARE In
1886, and, ten years later, BorEL enunciated his theory of summability in connection
with oscillating series. So far as diverging power series are concerned, the theory
of BoREL is more precise than that of POINCARE.
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280 ' MR. G. N. WATSON: A THEORY OF ASYMPTOTIC SERIES.

Since the paper of PoINCARE appeared, researches have been published by a host
of mathematicians. It is sufficient to mention the names of Crsiro, Lr Rovy,
Van Viick, StieLtdes, MerLiN, MitTac-LEFFLER, BARNES, HARDY, and LittLEWOOD
as investigators, either of the general theory of oscillating and asymptotic series, or
of the asymptotic expansions of particular classes of functions. Complete biblio-
graphies are to be found in Bromwicw’s ‘Theory of Infinite Series, and BARNES
‘ Memoir on Integral Functions.’* The former work contains an excellent history of
the subject.

It might be considered that, when the theories of PoiNcark and BorewL had been
discussed with such vigour, there would be comparatively little room for further
general developments of the subject. In this memoir, however, I propose to discuss
an aspect of the theory which has hitherto remained unnoticed, and which promises
to have many useful applications. In fact, I have already found it to be of
importance in connection with the problem of expanding an arbitrary function in a
series of inverse factorials, and 1t is highly probable that the theory can be employed
with advantage in particular cases of the problem of expanding an arbitrary function
in a series of normal functions. A simpler application is that of determining an
upper limit to the number of terms that should be taken in a given asymptotic series
in order that, for a given value of the variable, the difference between the asymptotic
expansion and the analytic function represented by the expansion should be as small
as possible.

Tt is convenient here to specify precisely the meaning of certain expressions used in the sequel :—

(i) If % be a real variable, the statement = > « means that some positive number A (independent of )
exists, such that # = ¢ +A. Thus it might be convenient to take A = 1071,

(ii) A function f(z), of a complex variable , is said to be analytic in the region |z|< @ when the
function has no singularities in the interior of the region, although it may have singularities on the
boundary |x| = u.

We say that the function is analytic in the region |z|=a when some positive number A exists such
that the function is analytic in the region |2| < ¢+ A.

(iii) A function f(z) is said to be analytic in the sector « = arg « = 8 when, if z, be any singularity of
f(z) in the finite part of the plane, @ is not within the sector, and the distance of @ from the boundary
of the sector is at least equal to A. The statement does not mean that f(z) is “regular about the point
& = o, i.c., that f(z) can be expanded in a convergent series of negative integer powers of = if x| be
sufficiently large.

(iv) When a region is specified by means of two inequalities (e.g., |arg | < 4=, |#| < 1) we mean the
region in which both the inequalities are satisfied, unless an explicit statement is made to the contrary.

(v) It is necessary to make use of the ideast of Orders of Infinity ” so frequently that attention is rarely
directed to their use. Thus, if we have |z, | < p"* where p is finite, and » is any integer, no matter how
large, we should, if necessary, say at once that |, < K.n! where K is finite.

Before proceeding, it is desirable to summarize the chief points of the theories of
Poixcar® and BOREL :—

* ¢Phil. Trans.,” A, vol. 199, pp. 411-500, 1900.
+ HarpY, “Orders of Infinity ” (‘ Cambridge Tracts in Mathematics,” No. 12).
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(i) A function f(x) is said to possess an asymptotic expansion (in the sense of
Poivcart) for large values of |x|, and for a certain range of values of arg x, if, for
such values of arg x, the function can be expressed in the form

F(@) = ap+ %1 +% +...+%+Rn,

where |R,|=J, }m! 71 when |x|> .

The quantity vy is finite, n is any assigned finite integer, and J, is a finite quanm’cy
depending on y and 7, but not on |x|.

(if) BoreL’s theory is an attempt to associate with the series

ao+ =+ a2+

a quantity, S, which shall be equal to the sum of the series if the series happens to be
convergent, and which shall have a definite meaning if the series be divergent.
Putting _
| ap+ 2L 4 ?‘i b= (1),
BoreL defines S by the equation
S = [ e (tfe)dr
0

when the integral converges, the original series is said to be “summable.”

This theory requires some knowledge of the singularities of the function ¢. Such
a requirement is a defect of the theory, so far as many applications to asymptotic
expansions are concerned, for it will often happen that, when we are given a function
JS(x), we can obtain an asymptotic expansion of PoiNcarE's type with some knowledge
of the values (or the upper limits of the values) of @y, oy, ..., a,, R,; we may be able
thence to deduce the radius of convergence® of the series for the function ¢ (¢), and
yet have no knowledge of the singularities of ¢ () outside the circle of convergence of
the series for ¢ (£). By this lack of knowledge BoreL’s theory is robbed of a great
deal of its usefulness. |

Some severe strictures] have been passed by Mirrac-LerrLer upon Borer's theory
for other reasons.

After these preliminary statements, we summarize the objects of this paper. In
Part I. we define certain quantities called characteristics, which bear much the same
relation to an asymptotic series as the radius of convergence bears to a convergent
series. The definition is a natural consequence of an attempt to impart more precision

* Which may be finite, as in the case when a, = (=)*.n!.

T See, ¢.g., the assumptions made in § 104 of BroMwicH's ¢ Theory of Infinite Series.’

I At the Fourth International Congress of Mathematicians. See the Bulletin of the American
Mathematical Society,” vol. xiv. (ser. 2), p. 485.

VOL. CCXL—A. 20
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to PoiNcar®’s theory by making use of some of BorurL’s ideas, but without making
use of any of the properties of BorrL's associated function, ¢ (¢), so far as the
singularities of this function outside its circle of convergence are concerned. After
defining the characteristics of a series, we proceed to prove a number of simple
theorems concerning the characteristics of series derived in various manners from a
series with given characteristics.

So far the analysis would not appear to have any practical importance. To justify
its existence we investigate, in Part IL, the circumstances in which an analytic
function, known to possess an asymptotic expansion with assigned characteristics, s
determined uniquely by its asymptotic expansion.® It is then possible to determine
circumstances in which an asymptotic expansion, with given characteristics, is
“summable” by the method of BorrL.

Finally we investigate the characteristics of the asymptotic expansion of a function
derived from the “logarithmic-integral” function, as a simple example. Further
examples, namely, of the gamma function and of Mrrrac-Lerrrer’s function, B, (z),
are contained in another paper by the writer.{

It should be mentioned here that the theory described in this memoir does not
cover the investigation of those functions for which BorrL's associated function, ¢ (¢),
has a sequence of singularities at the points #;, £y, ..., such that Lt arg ¢, = 0; such

=
an associated function would be, e.g., cot ar (¢+41), which has singularities at the points
t = —i+n (n any integer). It seems, however, that none of the ordinary functions
of analysis possess associated functions of this nature.

Part I —TaE CHARACTERISTICS OF ASYMPTOTIC SERIES.

1. The type of function,} f(«x), which we shall discuss, is subject to the condition
that, when |z|> v, « =argx = B (where «, 8, y are given finite quantities), it can
be expressed in the form

f(m):ao+%JrZ-_§+...+%Z+Rn, N )

where
la, | =A. T (kn+1).pm. « o . . . . L (la)
IR =B.v(ln+1).0". . . . . . . . (I1B)

The number 7 is any integer, and the quantities A, B, £, [, p, o are independent of
nand |x]|.

* Tt is known that an asymptotic expansion of POINCARE'S type does not determine an analytic function
uniquely ; thus (I+2)™ and (1+2)"'+¢™® have the same asymptotic expansion, viz, 1 -z +272~ ..,
when 2] is large and |arg z| < .

1 To be published shortly in the ¢ Quarterly Journal of Mathematics.’

t Throughout Part 1. of the paper the functions are not restricted so as to be analytic.
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The novelty introduced in these assumptions lies in the fact that we consider a,
and R, (or, more precisely, the moduli of these quantities) as functions of n for all
values of n, no matter how large.

It will be convenient to give names to the quantities A, B, X, [, p, o; we shall call
k, 1, p, o characteristics of the series (1); & will be called a grade, I an outer grade,
p a radius, o an outer radius of the expansion. The quantities A and B will be
called constants of the expansion.

If an inequality of the form (1A) can exist when k= £, but not when k < k,, we
might, for greater precision, call &, the principal grade of the series; and the smallest
possible value of p associated with £, might, in like manner, be called the principal
radius ; similarly we could define the principal outer grade and the principal outer
radius. But it is found that this additional precision is unnecessary, and we will
accordingly prove all our propositions for any possible characteristics; and, further,
it may be stated that the characteristics, determined for particular series (such as
the asymptotic expansion of the gamma function) by the ordinary processes of
analysis, are of such a magnitude that, although they may not be principal
characteristics, we could not expect to obtain any additional knowledge of the
functions investigated by knowing the actual values of the principal characteristics.

Examples :—
(i) Let
log @), = knlogn+cn(1+e¢,),

where |e,|> 0 as n> o, and % is real and positive.

The principal grade is k.

The principal radius is (by the asymptotic expansion of the gamma function) |exp {¢~k (logk - 1)},
provided that the upper limit of R (ene,), as n > o, is not + oo,

If the upper limit of R (ene,) is + oo, the quantity |exp {c— (log & — 1)} | +98 is a possible radius, where
8 is an arbitrary positive quantity, but not zero.

(i) Let :
log @y, = knlogn+cn { /(log n)+ e},
where £ and ¢ are real and positive.

The quantity & +3, is a possible grade; and 8, is a possible radius; 8; and 8 being arbitrary positive
quantities, but not zero. .

(iif) The reader may prove that, if f(2) be defined by (1), then [w {f () —ao—aw™} do has the same

characteristics as f(z) when k=1 and I =1, where the path of integ;’at}ion is the straight line which, when
produced backwards, passes through the origin.

Theorem I.—If k, I, p, o are possible characteristics of an cxpansion, then, if we
regard | and o as being given, we may always asswme that the quantities k and p are
such that

(1) k=1, () ifk=1p=o

For from equation (1) we have

s = (Rp=Ryii) 2",
20

Lo
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go that
s ’00n+1ls{’Rn[+an+]|}lwln+ls
2.e.,
|ttyir | = Bo"{T'(In+1) +o|x| 0 (In+l+1)}.

Now, for all values of n, I'(ln+1) < KI'(In+1+1), where K may be taken to be a
finite number independent of n.
Therefore, since |x|> v, assuming that + is not zero, we have

! W11 ‘ < Bo'T' (Zn + 1+ ].) {K+ 0")’“1}.

Comparing this equation with (14), we see that ! is a possible grade; in other
words, if we are given a number [ as an outer grade, and a number &, greater than
[, as a grade, we may take [ as a new possible grade.

We also see that if & =1/, and we are given o as an outer radius, and a number p
greater than o as a radius, we may take o as a new possible radius.

2. Let us now consider the product of two functions f; (x), f; (x) whose expansions
(valid over a common range of values of arg x) are

fi(x) =ar0+%zl +...+?§f +R,,

/! /!
Jo(x) = a’0+%+...+%”+R’n.

Let possible constants and characteristics of these expansions be Ay, By, &y, Iy, p1, 073
Ay, By, ks, Uy, ps, o5 vespectively.

We shall show that, for the range of values of arg x for which both these
expansions are valid, the product fi (%) f:(«) can be represented by an asymptotic
series of which possible characteristics are kq, by, po, o705 Where kq, by, ps, o denote the
greater of the numbers &y, ky; U, ly; pi, pas o, 03 respectively.

By direct multiplication

, b b,
Ji (%) fu(x) = bo+:c—1 Fot +8S,,
where
bn = 6LOCL,H,"" ala’,n—l ot an“,Oa
&=%mﬁ%mm+%ww+m+%mﬁmmmﬁm
so that

|b,|= AA, S T (rk+ 1) T {(n—r)ky+1} p/ps" "
r=20
Now, when* ¢>0, T'(1+§) is positive and decreases as ¢ increases till
£=0461...(= &, say); when € > &, 1" (1 +¢) increases with £; and when 0 < £<1,
(1€ < 1.
* DE MORGAN’s ¢ Differential and Integral Calculus’ (1842), p. 590.
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Also I' (14 &) = 0'8856... = »,7', say.
So that if
E>E>0, T(+E) <nl'(1+§);

£=1, [(14+&) <T(1+§).

Returnlng to ’ohe definition of b,, we get from these results

and if| further,

[h,{_AA 2I‘(rk+1)1‘{(n ) ky+1} pips ",

n—1

= A Ap [T (nky+1) +T (nk,+1) + 2 I‘(Ml—k DI {(n—r)ky+1}],

= AyAupy? [(1470) T (nko+ 1) + s S (ko 1) T { (=) k11,
r=1

where
no=mif k<1 and &y # ks,
and
n; = 1 1f either or both of the conditions k, == 1, k, = k, are satisfied.

Now consider F (§) = T'(&ky+ 1) T' {(n—¢§) ky+1}, qua function of a continuous real
variable £ If ¢ denote the logarithmic derivate of the gamma function, we have

g F(f) = o B (&)[% (Eh+ 1) = {(n—E) ko +1}].

But, since —-41 (¢) = we see that i (¢) increases with & when &> 0.

m = 0 (f+ )2 ’
Hence O%F (§) is negative When & =n—¢; and therefore, in the summation
S T (P 1) T {(n=r) o+ 11,

r=1

the terms decrease until the middle term (or terms) and then increase, terms
equidistant from the beginning and end of the summation being equal.

Two distinct cases now come under our consideration, (I.) when %, = 1, (II.) when
ky < 1.

In the first case, using the equality

T(ky+1) T {(n—1)ky+1} = T (nk+ 1)j1(1_z1/k0)<n~1>kodz,
0

we have, from the result just proved,

7l—-

S T(rky+1) T {(n—r)ke+1} = (n—=1) T (ky+1) T {(n—1) ky+1},

r=1

= (n—1) T (nky+1) j (1—2H)n=Dlo ]
0

: .
= (n=1) T (b, 1) | (1=2)0"0dz, [1—;'21 = 1—z}
= (n=1) T (nky+1) {(n=1) it 117

<ky' T (nky+1).
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From this we deduce® that

10, <AAgp” (245 T (k1) . . o . .. (2)

In the second case, let m be the greatest integer such that mk, < 1.
When n < 2m+1, we have, as in the first case,

S Tk 1) T{(nmr )yt 1} = (0= 1) T (hyt 1) T {(n—1) Ty 4 1,
r=1
= (n—1) T (nk,+ ],)j1 (1 —zMo)or= bl
0

. - since the integrand is less
= (n=1) 1 (uho 1), [ than or equal to unity

= 2m T (nke+1),
so that, when® n = 2m+1, we deduce from the inequality on the preceding page :
[0.] <AAup [ 142+ 20k, T (nky+1).

Lastly, when n = 2m+2, we have

ST (ko + 1) T {(n—) by 4 1}
r=1
n—1—m

=23 D(rky+1) U {(n—r) b+ 1} + 3 T (rky+1)T {(n—1) ky+1},
r=1

7= m+l

n
=2
»

1M

T {(n—=7)ky+1}+(n—1-2m) D {(m+1) k+1} T {(n—m—1) ky+ 1},
1

since T'(rk,+1) <1 when 1=<#=m, and the largest terms of the summation
n—1--m
S, are the first and last.

mn+1
But, when 1 =7 =m, U'{(n—r) ky+1} = " (nk,+1); and hence

n

it M

1 I (rky+ 1) T{(n—r) ky+ 1} = 2mI (nk,+1)
L .

»

1
+(n—1-2m) [ (nk,+ l)j {1 =gl Dk amm=Dk gl
0

= 2mI (nk,+ 1)+ (n—1—2m) I' (nk,+ l)j1 (1 —z)rm=Dhodly,
[since 1—z/m+ 0k <1 —z]o
= {2m+k""} U (nk,+1),
and consequently, in the second case, for all values of 7, we have
b < APt { Ly (b k) T (k1) 0 L 0L (24)
We see at once that this formula covers the first case also (m being then zero)

* This is only proved when n = 1 ; but it is obviously true when n = 0.
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We have thus proved that f; (i) f, () possesses an asymptotic expansion of which k
s a grade and p, ts o radius, and a possible constant is

AVA, (T4 (2m+ 1+ k7],
where m 1s the greatest integer such that mk, < 1, and v, is defined as above.
We now wish to determine an outer grade and an outer radius.
We have seen that
R oY Ap 7 ’ ’
Sn = Q’/OR n+ q; R n—1 + “oe + i‘" R n‘l"Rn (C[/ 0+R Q),

so that*

|82 < ABy 21 (rk + 1) T{(n—2) L+ 1} poy "+ Bl (nd,+1) 07" (Ay+ By ™).
=0
Let us suppose that l;=1,, so that [,=k,; then, since p, = oy, 03 = 7, we get, as in
the previous work,

[S" ™| < ABu {147, 2/ +1+1,7)}T (nly+1) o
+ AzBln"lP ('nlo + 1) 0'0n+ BlBg”I]”l I (nlo"l" 1) '}’_10'0",
where m/ is the greatest integer, such that m/l, < 1,
ny=mn if L>k and [, <1 (otherwise n;, = 1),
n'=m if L, >0 and [, <1 (otherwisen”, = 1).
We consequently get always
q yg y ‘

|8, < [(AsBat AuBy) {142 (20 + 1+1,7)} + BBansy ™| 0T (ndy + 1),

where n, = m, if I, <1, 7y =1 if [,=1.

That 1s to say, I, ts an outer grade, o, an outer radius, and
(ABy+ AB) {147, (2 + 1 +14,7) } + B, By ™

15 a possible outer constant of the asymptotic expansion of f; () f, ().

We have thus obtained the results stated at the beginning of the section.

We deduce that if two functions f; (), f; () both have asymptotic expansions with
k, I, p, o as a set of characteristics, and possible constants being A,, B,; A, B,
respectively, then the product f; (x) f; () has an asymptotic expansion with the same
characteristics, the constants being A,, B,, where

Ay = AA, 2m+2+k7), By = (AByt AB) {147, (2p+1+1)} + BBy, (34, B)

* The quantity vy is defined in connection with equation (1).
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288 MR. G. N. WATSON: A THEORY OF ASYMPTOTIC SERIES.
where m, p are the greatest integers, such that

mk < 1, pl <1,
and
=1 If (<1, n=1 1f [=1.

Also, by induction, we deduce that if f(x) have an asymptotic expansion with
k, 1, p, o as characteristics, {f(x)}” has an asymptotic expansion with the same
characteristics, » being any finite positive integer.

Let us, however, examine the series for { f(x)}" in greater detail when » is a positive
integer.

Changing the notation slightly, let A, B, k, I, p, o be possible constants and
characteristics of f(x); we may therefore take A,, B, %, [, p, o as constants and
characteristics of { f(x)}", where

A, =MNA, B, = (AB,.,+A, . B)N+BB,_ .y
This follows from (34) and (3B) combined with the identity
{f @y =/ @) {f @)}

we have written A,, B, for A, B, and we have also written X\, N for the quantities
2m+2+k7", 1479, (2p+1+17") of (3a) and (3B).
We see at once that

A, =N"TAY, Bo=(AN+By ) B +AT'BNTN.L L L (44, B)

Dividing through (48) by (AN +By™), putting » = 2, 3, ... and adding the results,
we get without difficulty

_ ’ —1\r—1 ’ ’ -1 r~2r—2 __A_)\__>n
B, = (AN +By 1y B+ ABN (AN +By™) ,EO<AN+B7“‘ '

From equation (4B) we see that we should get a rather larger value of B, than is
given by that equation if we put u for both A and N, where

po= 14 (2m+1+£7Y),
so that =\, u= N, since m=p, k'=1"

The result is so much simpler that we shall do so; and the result we get is that
B, is a possible outer constant of { f(x)}" where

B = y{(Ap+By ™y —(Ap)} o o o o o (5)

3. We shall now prove that, if f(x) has an asymptotic expansion with £, [, p, o as
characteristics, then exp {f(x)} possesses an asymptotic expansion with the same
characteristics.


http://rsta.royalsocietypublishing.org/

\
A

A

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

Py
fa \
A A

.
Y,

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MR. G. N. WATSON: A THEORY OF ASYMPTOTIC SERIES. 289

Let A, B be possible constants of f(x); from the deﬁmtlon of f(x) we have, with
the usual notation,

exp { f(x)} = exp a, . exp RO

_ B R R’O” R0n+1 ]
= (exp a,) [1+ D4 TR +7T!+(n+1)l+
Now, by the work of the preceding section, we can expand R,™ in an asymptotic
series with characteristics %, /, p, o; and the expansion will be of the form

b b b
mm mYm+1 nYn
,Lm + mm—i—l + Lo + ’L'n + mSm . . . . . . . (6)

R -
where, by (44) and (5),
lmbr[ = Amxm—lr\ (]C?"+ 1) pr (,),. = 777/)

mbr =0 (7' < m)
and

|2" .S, | =y [(Ap+By )y —(Ap)"] T (In+1) o™
We may consequently write

expf(:r)—co+ + St ”+T

where

= (exp a,) [11— ;b tot "b] Co = €XP Gy, |

— Sn nSn R‘n+l R n+2
T, (expag)[ 2Y+ +7’b—!+(n—i0-1)!+(n—£2)1+“':]'

and

Consequently, if n > 0,

| lcl—leXPaol[_lA:w:— (kn+1)Pn]’
Z: lea| =\ exp ay| {exp (AN)—1} T (kn+1)p", . . . - (74
Further, al=lepal '
B gy {(Apr By Ay 0t D
{B(in;)};“ {B(iwl;)}jﬂ...],

VOL, CCXI.—A. - 2r
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so that
® —1\m __ m .
| T, exp(——ao)!E‘I: Sy {(Ap+ By )" —(Ap) }] r'(ln+1)o"

=1 m ’

. Bn—l—l B B2
+(n+1)1[1+m+zzyz+“l

-1y S /E>.
< ylexp(Ap+By™)—exp (Ap)]T (In+1) o™+ (n+1)!exp KY

Now, by the asymptotic expansion of the gamma function, it follows that

n+1
m < KT (l’i?,+ 1) a”

for all integer values of 7, where K is finite and independent of 7, so that
|2" T, | < [y {exp(Ap+By™)—exp (Ap)} +Kexp (By™)] x |expay|.T' (In+1) o”. (7B)

Combining the equations (7a) and (78), we see from (7) that exp f(x) possesses an
asymptotic expansion of which %, [, p, o are characteristics.

4. We shall conclude this part of the paper by proving three general theorems.

Theorem Il.—Let f(x) possess an asymplotic expansion with characteristics
k, 1, p, o, and constants A, B.  Then, if © (&) be a function of & which is reqular®
wnside o circle of radius greater than Au-+By™, the centre of the circle being at
E=a, (p and y having their usual significations), then & {f(x)} possesses an
asymptotic expansion with characteristics k, 1, p, o, which 1s valid for the same range
of values of x as the expuansion of f(x).

Let @ (a,+ &) be expansible in the series

(I) (“0"’ é':) = 9’0+91§+ng2+ .;. .
Then v
m§0 lgml(A)u,—}-By’l)m = G,
and hence

[9m| < G(Ap+By™)™

where G is finite and independent of m. [These statements are true if the less

stringent condition be satisfied. |
Now, f(x) = a,+R,, so that

P {f(m)} = go+9’1R'0+9'2R02+ +9’nRon+gn+1Ron+l+ cees
this series being convergent since |Ry| < By™.

* This condition may be replaced by the slightly less stringent condition that the series for & (@+ &)
should be absolutely convergent when |[&| = Ap+By™™.
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Using the expansion (6) and keeping the notation of that equation, we find that
O {f(@)} = et D+B4 44T, L)

where ¢, ¢, ..., T, are now defined by the equations
and, when n > 0,
Co = 3 Gn - mbn, Tn= 2 G- St s [/ L

m=1 m=n+l1

Consequently, if n > 0,
o= 2 g, | AT (R 1) p
m =1

< le(}{ AM -}’r(imﬂ)pn,

m=1 A B_l
v.e.,
AG Lo
lcnl<A(u—>\)+By'11(lm+1)p' Do o oo . (8a)
Also
lT”|§m§1|gm lmsnl—]-mr-%+ l\lngonll,

= 3 |galy {(Ap+ By ) = (A} Dt ) o2 7 E g (Bla] ),

m =

< 3 [guly (Apt By ) T (In+1) 0% 2|4 (B[ 71 2 (g (Bl ),

m =

T l n —n—1 n+1 —n—1 et (;By—1)1)z \ ’
< 'YG ( n+ 1) (o lwl +B 'x] 1;;§0G(A/J,+B'y»1)m+n+l

z.e.,

| T,z | < yG T (In+1) o™ +GB { B }n

Ap A,u, + By_l

But, from the asymptotic expansion of the gamma function,

B * / n
where K’ is finite and independent of #.

Hence
| T < {yG+GK'BA '} T (In+1) o™ . . . . . (8B)

Comparing (84) and (88) with (8), we see that @ { f(x)} possesses an asymptotic
expansion with characteristics, %, [, p, o, valid for the range of values of x stated in
the enunciation.

2P 2
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In particular, we notice that this theorem is true if ® be an integral function.
The result of the last section concerning exp { f(x)} is, of course, a particular case of
the theorem.

5. Theorem III.—TLet f(x) possess an asymptotic expansion with constants and
characteristics A, B, k, 1, p, o, valid when |x|=y and for a certain range of values
of argz. Then, if @, (ay+§) be a function of & which is reqular when | €| = ¢, where
¢ <Ap+By™ (n having ats usual signification), then, when |x| is greater than
the two quantities y and Bfe, @ { f(x)} possesses an asymptotic expansion, valid
Jor the same range of values of arg x as the expansion for f(x), with characteristics
k, 1, po, oy, where p, is the greater of the quantities™ p and p. (ANc), while

oy = (Ap+By ™) ofe,

where vy, 1s the larger of the quantities y and Bfe.
Let the expansion of @, (a,+ &), when |§|=c be

D, (a,+ &) = T+ Tné+ o2+ ...
since this series is absolutely convergent when |[{|= ¢, we h%we
§O hale® <H,  |h,] < He™,
where H is finite and independent of m.
Since f(x) = a,+R,, we may expand @, { f(x)} into the series
O, { f(2)} = ho+ IR+ 1R+ ..o+ AR+ Dy Ry 1L

provided |R,|=c.
Since |Ry|=B|x|™", the expansion will be valid when

|z]=y and Blz|'=c.
Substituting for R,, R ..., Ry" as in Theorem II., we get

@, { f(x)} =do+%+...+g—;+Un, R )
where
dy=hy,  Uy= 3 hR",

m =1

and when n > 0
d= Sh, b, U,=53h, S+ % WR"

m=1 m=1 m=n+1

The quantities ,,b,, ,.S, are the same as those which occur in equation (6).

* If AN = ¢, pp = p+9, where & is an arbitrary positive quantity as small as we please.
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Consequently, if n > 0,

(A= 3 [ho| AN (Bt 1) p°
m=1

< S NTHAN T (knt1)p% . . . . . . (94)
m =1
If A\ # ¢, we have
: m o (AMo)'—1 nypy AN
mﬁz‘,l(A)\/c) = Moo . ANe < {(ANec)*+1} Ah—o|”

From this result, combined with (94), we see that, if AN # ¢, we take p,, the inner
radius of @, { f(x)}, to be the smaller of the quantities p, pAN/c.

If AN = ¢, we have
|d,| < n.\THT (kn+1) p",

and if 8 > 0, we have np" < K, (p+8)", where K, is a finite quantity depending on p
and o, but not on n. That is to say, if A\ = ¢, p+38 is-a possible radius of @, { f(x)}
and £ is a possible grade. »

Further,

U= 3 ylo| 7 [(Ap+ By )y = (Ap) T B D @t ) ot 5[] [ R

m=
i.e.,

(U2 < S yH{(Ap+ By )/e)" T (fn+r1) o™+ 3 H{Elﬁ}'"]w“
m=1

m=n+l I%l
< yH[{(Ap+By™) e} =11 (In+1) 0" [(Ap+By™) =117
Bn+1 ) B -1
(o) Bl

Using the inequalities B < ¢|x|; (Ap+By™)¢™> 1, and (Be™)** < K,I' (In+1) o7,
(where K, is independent of n), we get a formula of the form

U2 | < Ky {(Ap+By™) o™} T (In+1),

where K, is independent of n. That is to say, ! and o, defined as above, are a
possible outer grade and a possible outer radius of ®, { f'(x)}.

6. Theorem IV.—Suppose that for o certain range of values of arg (x+a), f(x+a)
possesses an asymptotic expansion in negative powers of x+a valid when |x+a|=1y
with constants and characteristics A, B, k, I, p, o Then for the same range of values
of arg (x+a), f (x+a) possesses an asymptotic expansion in negative powers of x valid
when |x|=vy+ |a| with characteristics k, I, p,, o, where

pr=p+lal,
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and oy ts the greater of the quantities op and
greatest possible values of |z (x+a)™!|, |(z+a)™
consideration.

It is easily shown that

al+p+plajp where p, p' are the
respectively for the values of x under

1 1 o, d w1 . at
ira s @ te T N ey
Differentiating » times with respect to a, we get
(=)yr! _ (=)l (S)Pa(e+)t ()T =D

(w+a)r+l T 2 11 e " (n_qﬂ_l)l +("') 1Y (10)

where
d [ o
" ”! fd —_—
@i Yo da"<w+a> '

But, by LemsNiz’ theorem,
_c_l’”_(a”) nla"™" [ a.1 s a?.1.2.
da"\x+a/ (x+a).(n—r)! n—r+1) (z+a) A n—r+1)(n—r+2)(xw+a)

. a".1.2....7r
O e @) )

the quantities ,C,, ,C,, ... being the binomial coefficients.
Consequently

o)
da” \x+a

<ol ol 2ol ]
I

I n!la|*" [ [a] ]T
@ 1 ¥ rn| < |e+a|. (n—r)! 1+|oc+0t| '

n!la|™" [H—‘ a
‘ [x+al. (n—7r)! zt+a
so that

Now f'(x+a) possesses an expansion of the form

—_— a4 A,
Slata) = et 220+ +(w+a)”+
where |a,|=Ap'I' (kn+1), |R,(z+a)*'|=Bo"T (ln+1).
Substituting for the negative powers of z+a from (10), we get

Sflx+a) = b0+%+ +%+Sn,

where
—_ N 2
b, = a,—,1Ci. .ty 1+,.Cy. 0%, @poy—
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and
Sn = R?l + ( - )nalYI + ( - )n--lCle2 _‘- e T alnYn,
so that

[0 =] 0| +0aCila] | s | +2-1Csl @] |@es] + ...
= A[D(knt 1) g+ T (n—= 1)+ 1}p7 ] s Cob DIE. (1=2) 41} p"2 | |2, Cort ... ]

Now
r{k(n—r)+1} =T (kn+1),

where

, n = 8856... if k<1, n=11if k=1,

Consequently
_ [0a] = AT (kn+1) [p"+.Cop" [ a| +.Cop" [0+ ... ],
w.6.,

\ [0, | = AqT (kn+ D) {p+ ||}~ . . . . . . . (104)

50
IS, |=Br (In+1)o*|x+a| ™+ o Y|+ | Ys| + oo +]0,Y,]
EBI‘fln+1llo-”.+ ”2’ A ]a}":’ [: + la| ] ,HI‘(kj;—}—ktl).
|e+a| ’ lz+a|(n—r)! |+ r!|x]

And for the values of » under consideration (since & =< 1),

U (kr+k+1) < (In+1).
Therefore
!S,,w"*‘[sf(ln+1)[{ olz| } Blz] | Ap l{l a|+p+-Ll2L H

le+a|] |x+a| |z+a |x+a|

=T (ln+1)[Bu. (op)'+App/{|a|+p+pp'|a]}"]
|S, 2 | =T (In+1). Bu+App)o . . . . . . . . . . . . (10B)

ne.,

From (104) and (10B) we see that £, /, pl, o are characteristics of the expansion of
f(x+a) in descending powers of .

We have now proved all the theorems which seem to be of importance concerning
asymptotic series in general. We proceed to discuss properties of analytic functions
of which asymptotic expansions are given.

Part IL.—AnNALYTIC FUNCTIONS DEFINED BY ASYMPTOTIC SERIES.

7. We first propose to consider the question of the uniqueness of an analytic
function which is defined by means of an asymptotic expansion possessing given
characteristics.

The discussion will be based on the result of the following important lemma of
which we shall give a proof before proceeding further :—

Lemma.—Let f () be o function of ® which is analytic* in the sector defined by

* See (iii.) on p. 280.
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the inequality |arg x| = 4w+ where N> 0; and let the region in which f(x) s
analytic be extended to all points (outside the sector) whose distance from the
boundary of the sector does not exceed 2A, where A > 0.

Let f(x) be such that, throughout the sector and this extended region adjacent to
the sector, there exists an inequality of the form

| f@)] < Aexp {=][a]],

where A is a constant independent of .
Then the function f(x) us tdentically zero.™
Let x, be any point within or on the boundary of the region |argz|= fw-+\
Then

nl f SO

dx," 2t} (b—ae)" ™t
round an appropriate contour.
Since any singularity of f(x) is, at a distance, greater than or equal to 2A from x,,
we may take the contour to be a circle of radius A with x, as centre.
We then get, without difficulty,

| ()| =n! A M

where M is the greatest value of | £(£)| on the contour, and f® denotes the n™
differential coeflicient of f.
But on the contour

[ S(0)] < Aexp{—]t]}
< A exp{A—|z]|} since |t|=]|w,| —A.
That is to say, if’ |arg )| = Lw+\,
| fO ()| <nle* A Aexp{—]a]} . . . . . . (11)
Let us denote the integral of a function taken along a line from the origin to
infinity, inclined at an angle 0 to the real axis, by the symbol [ .

v (0)
Consider the function I defined by the equation

F(y):LO)f(ty)e“%tdt.. (19

The function F (y) is analytict in the interior of the region given by |arg y| < 3w +\
(but possibly it is not analytic on the boundary of the region).

* The proof of the lemma is suggested by a paper by PHRAGMEN, ¢Acta Mathematica,” vol. 28,
pp. 351-368.  His paper, however, deals with integral functions, whereas we know nothing at all about
the behaviour of f (x) outside a certain sector of the plane.

t The condition given by Bromwicw, ¢ Theory of Infinite Series,’ p. 438, is satisfied by defining his
function M (¢) by the equation M () = Ae*A~1. {67+,
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We shall show that F (y) is a constant, independent of v.
If m+h=argy = —3\, we have

Lo)f(i‘y) e~ Hdt = J’ ' F(ty)edt;

(3 in)
tor, by Cavcny’s theorem, the difference between these two integrals is j S (ty) e ¥ dt

taken along the arc of an indefinitely great circle terminated by the lines arg ¢ = 0,

argt = —§w-+4\; on this arc we have |arg (ty)|=%m+\, |argt| < $m; it follows,
without difficulty, that the integral along the arc is zero.
Butj S (ty) e *dt is uniformly convergent over the interior of the region
(=gm+30) .

T+IN = argy = — &\

Consequently the analytic continuation of F (y) over the wnterior of the region
m+IN = arg y = — 3\ us given by the equation

F(y):j(_%ﬁm Ffley)esde. . . . . . . . (12a)

In like manner, the analytic continuation of F (y) over the interior of the region
—r—3\ =argy = 3§\ is given by the equation

Fo)=|,

L

Sflyye®de. . . . . . . . (12B)
-

Also F(0) = rf(()) e *dt = 2f(0); and we may show, by using equations (124)
0
and (12B), that Lt F (y) = 2/(0) when y approaches the origin by any path which
y=0

does not go outside the sector w+ik = arg y = —3\, or which does not go outside the
sector —r—i\ <argy = I\* '

Now, if we can show that F (y) is a wniform function of y, the only possible
singularities of F (y) will be at the points ¥ = 0 and y = oo ; and the only possible
branch point of I (y) in the finite part of the plane is at ¥ = 0; accordingly, to prove
the uniformity of F (y), it is sufficient to prove that, when ¥ starts from any point in
an assigned region of non-zero area (not including the origin) and describes a closed
circuit round the origin, the initial and final values of F (y) are the same.t

Let y, be any quantity such that

ly|= 1, —m—IN < argy, < —mw+EN;
we proceed to prove that F (y,e™) = F (y,).

* The integrals (124) and (128) are uniformly convergent when y lies within or on the boundary of the
respective sectors, by WEIERSTRASS’ test for the uniform convergence of infinite integrals [BromwicH,
‘ Theory of Infinite Series,” p. 434 ; we replace BRoMwICH’S function M () by Ae~*).

T If two analytic functions are equal at all points of a region of non-zero area they are the same branch
of the same function ; in the case under consideration the functions are ¥ (yp), F' (ype™™).

VOL. CCXL-—A., . 2 Q
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Suppose that y starts from 7, and.describes a circle of radiug |y,| and centre at
the origin, ending at the point y,e*.
We have
F () =

( f(M//») e~ (.
<G —3A)

Making the point ¥ move from 7, to y,e™ round the circle, we get

F(ye) = |

J@r—”

f(ty,e™) e ¥ di.
Now, when
Fr—EN=argt = Lt

arg (] < dm, Jang (tye)| < S

Consequently [ f(ty,) e *dt taken round an are of a circle of radius N terminated
by the points Nexp {+ (dm—4N) ¢} tends to zero as N=oo; and therefore, by
CaucHY's theorem, we may deform the path of integration and get

S ty,em) e dt.

Now make y move from y,e™ to y,¢™, and we get

F () = |
J (=G 5A)

Flye™) = flie=) e de

(=gt

Writing te™*" for ¢, we get

F(ye) = J f(ty) e di.

: )
Consequently

~ »

F(yoez”i)—F(yo)z[ .»«‘§(§7rﬁﬁk)]‘f(tyo)e-%fdt. T

(CLEE2Y

Now consider [ f(ty,) e ¥ dt taken round an arc of a circle ot radius N terminated

by the points
Noxp {(Br+40)i},  Nexp {(Jr—N) i)

On this are, which we call T,

larg (ty,) | < $m+\

Consequently on T, v
| S (tya)| < Aexp {—[¢]u}-

Therefore

[ rmersar] < | Alexp (-

tl ool e[ d]e]

<A exp{=(lm|=B)e|}dlt]
<A [ oxp{~4Njdfe], since [p[=1

< AN (m+\).exp {—iN};

and this expression tends to zero as N + oo.
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Consequently, by Caucny’s theorem, the right-hand side of equation (18) vanishes ;
for the integrand has no singularities between I' and the rays argt? = fr—I\,
argt = 3w+i\

In other words, F (y,e™) = F (y,); that is to say, F (y) is a uniform function of v.

Furthermore, | F (y)| never exceeds a finite quantity independent of .

For*

Fo)=] eyt

£ (—3m A

<Al ). | dt |

Y=ty

< 2A cosec A

We have thus proved that F (y) is a uniform function of 4 whose modulus never
exceeds a finite quantity independent of y, no matter how large or how small |y|
‘may be.

Therefore by LiouviLiE's theorem ¥ (y) is a pure constant.

The proof that f'(y) is zero is now immediate.

For the equation

®

5 L bt y) dt‘ = f:g.gidt

is true provided the integral on the right converges uniformly and the integral on the
left 1s convergentt.

Now
a -1 -1
o L) = e )
< Ae*A7te™¥ by (11) when ¢=0, y=0.
Since j te™* dt is convergent, we know that} { -(;% S (ty). ¢"¥ dt converges uniformly
0 0

when y = 0.
Therefore d

v P — * , —%t
d;/F(y) - .(O tf' (ty) e™*dt when y=0.

Put y = 0, and we got, since F (y) is a constant,
0 :j tf7 (0) e~ d.
0

* If the imaginary part of y is positive or zero, we may take 0 =t arg y == =, and the upper sign is to be
taken in the ambiguity ; if the imaginary part of y is negative or zero, we may take 0 = arg y = — =, and
we take the lower sign; we have already discussed what happens when y = 0.

T BromwicH, ‘Theory of Infinite Series,” p. 437.

1 Ibid., p. 434.

2 2
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o]
In like manner, since ( t"e”¥ dt is convergent, we may show that, when » is any
<0 .

finite integer,
dn
dy*

F(y) = s e f® (ty)e #* dt  when 1y =0,
0

and f® denotes the n™ differential coeflicient of f.
Putting y = 0, we get

0 =f(n) (0) L tne—%jt Czt, i.e., f(n)(o) - 0.

Therefore f'(y) is analytic when |y]| < 2 A and all the differential coefficients of f(y)
vanish when v = 0; that is to say, f(y) is a pure constant, which we will call L.
Furthermore, by the definition of f(y)

L <A exp(=|y])
when |arg y| = 37+, for all values of |y|, no matter how large ; since exp (—|y|)>0

as |y|> o, we infer that L = 0.
We have thus proved the lemma, that

Sy)=0.

8. We are now in a position to discuss the uniqueness of an analytic function
possessing an asymptotic expansion with given characteristics for a certain range of
values of the argument of the variable.

The theorem, stated precisely, is as follows : (

Theorem V.—Let there be two functions f,(x), f;(x), which are analytic m the
region defined by the inequalities

|x|= 1y, a=argx =f;

and let them be such that in this region they possess the asymptotic expansions

Silw) = ap+ Sk % +R,,

x

where, for all values of n,
|, | < AT (kn+1)p",  |R,| < B (ln+1)o™ 2|7, |8, < BU(In+1)o™|a|

Then, of B—a > ml,
Ji(@) = fi ().

Let the region in which x is permitted to lie be called the region C.

| A (@)= /o (2)] <[Bu| ]S,

Since
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we have

| /()= fi(x)| < 2BT (In+1) ™| x| !

for all values of n, provided « lie in the region C.
Now choose 7 to depend on « in such a way that

n=I"{|eoT |} <n+l,
so that we may put
n = l_l{ [ma“ll }1’/1—9,
where 0 =6 < 1.

Now let y" be the greater of the two quantities (1+7) o and y; and let the region
in which |x|> 7/, « =arg x = B be called the region C'.
When « lies in the region €, we have

In = {|ec™|}"=10 > (1+1)~10 > 1.
But when In > 1, by the asymptotic expansion of the gamma function,
log I'(In+1) = (In+%) log (In+10)—In—10+% log 27+,

where J does not exceed a finite quantity independent of n. Consequently, when
lies in the region (¥,

|A(@)—=fa (x)| < By exp [(In+3) log (In+10)—In—10—(n+1) log |xo™?|],

where B, is a finite quantity independent of n and .
Substituting for In+10 in terms of x, we get

@)=/ (@) < Bl |7 exp [~ [0 ],

Putting fi (%) —fo () = f; (), we want to show that if f; () is analytic in the
region C’ and subject to the inequality

s (@ B, |zo™ | TV gxp [ — |2t V1],
then /i () = 0. | fo (2)| < By | | p[~] 1]

Let us put* x = oy and f; (x) = f; ().
Then f, (y) is analytic in the region, C”, in which

[y[> ™), e=lagy =8B,
and f; (y) is subject to the inequality (when y lies in (")
| AW < Bily[ ™ exp {~y]}-

If I =%, we see at once that in C”

| fi(y)| < Bsexp{—1y|} . . . . . . . . (14)

where B, is a finite constant depending on B, and v’

¥ 9 = oo is a singularity of this transformation ; but see (iii.) on p. 280.
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Also |y| ™ exp {—%]|y|} decreases when |y| > 1—20if | < 4.

Let vy, be the greater of the quantities (™), 1—2L.

Calling the region in which |y| > v, a =1[arg y = (3, the region C,, we see from
(14) and this result that in the region C,, whether [ be greater than or less than , we
have an inequality of the form |f, (y)| < Bsexp {—%|y|}, and y is analytic in the
region C,.

Now, define a quantity® X such that = > X > 0, (B—a)/l = «-+2X, and put

2=y exp {4 (wt B) i} — (byat 2) seo )

where A > 0; and let /) (y) =/ (2).
Then f(z) is certainly analytic in the sector |arg z
distance not greater than 2A from the boundary of the sector; for when 2 lies in the

= 4w+, and at all points at a
region just specified, % certainly lies in the region C,.
Also, in the region specified for z,

SN < Boxp {— o+ (b1 28) sec A}
< Byexp {({y,4-24) sec X} exp {—

21
z| ).

Therefore, by the lemma, f(z) = 0.
But f£(z) = fi (z)— fa(x); and therefore we have proved that f(x) = f;(x), when
Ji(x) and f,(z) are subject to the conditions stated at the beginning of the section.

The reader might be inclined to think, at first sight, that if 8—a>2n, we could infer that f3(z) is
identically zero on account of the theorem that “a non-convergent series cannot represent asymptotically
the same one-valued analytic function for all arguments of 2.”t

This theorem is not applicable, because fi (z), fa(z) may not be analytic inside the circle |z|=v; a
multiform function may have an asymptotic expansion valid for a range of values of arg » greater than 2.

Thus, the generalised hypergeometric function formulaj

2T (@) ' (1=p)iFi(e;p52) + @+ 1-p) U (p- 1o P Fi(a-p+1;2-p;2)
- I‘(a)l‘(ac—}—l~~/)>2F0<a;a+1wp; —lr)

&y

is valid when |arg z| < 3. ‘

9. We can now show that if an analytic function, f(z), possesses an asymptotic
expansion for large values of |x| with a grade and an outer grade equal to unity, the
range of values of arg w over which the expansion is valid being greater than , the
function f(x) is absolutely summable by the method of Borer for a range of values
of arg x just less than the range over which the expansion is valid,§ provided that
Borer's integral be taken along an appropriate path from 0 to oo, not necessarily the
real axis.

*

The definition is possible since 8~ a>>w/,

BromwicH, ¢ Theory of Infinite Series,” p. 335.

See BArNEs, ¢ Cambridge Philosophical Transactions,” vol. 20, p. 260.
The range of validity being taken less than 2a.

YR e =i
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Let us suppose that the expansion is valid when |#|= vy and o = arg x = B8, where

—a =m+2 and 0 <\ < {m

Putting z = x exp {—% (2+B)¢} and f(x) = F (), we see that F(z) possesses an
asymptotic expansion of the form*

()ma0+—+——+ +—+Rn,

where
la,|=A.nlp" IR, [=B.alo"z]

when |argz|=47+\and |z|=y

We notice that

IR, |=d,]«| ™,

where J, = B.n!o"y™h ‘

Let the region in which the asymptotic expansion of I (z) is valid be called the
region D, ’

Let L be a contour formed by the fo]lowmg lines :—

(i) The portion of the ray argz = —(4w+0) for which |z|=1y]|¢|, § being an
arbitrary quantity, as small as we please, such that 0 < 6 < \.

(i) The major arc of the circle |z|=y|¢t] terminated by the points
yltlexp {£ (m+0) ).

(iii) The portion of the ray argz = 4

Z| = 'y[t[.
Let us consider the function ¢ (¢) defined by the equation

1 .
%L F (zft). 27" dz = $ (¢),
where |arg ¢|=\—0.
We observe that when z is at any point on the contour L, z/¢ lies within or on the
boundary of the region D. . .
Now let us define functions i, s, ..., ¥, ..., by the system of equations

[ N R A

v

nTu} du = Yo (o). . . (L5)

The path of integration is supposed to be taken along the ray from v to infinity
which, when produced backwards, passes through the point w = 0; we deduce by
continued integration that the asymptotic expansion of s, (v) is

1/1 (71) — Wy . 1 I Uy - 772/‘ a’n+m . Wb! Pn-_k_m__
! nlv  (n+1)1o* 7 (n+m) (n-+m)! o™

where
| Prinl =[Josn| =B . (n+m)! g™ty

provided that v lies within the region D or on its boundary.

* This function F will not be confused with the F of Section 7.
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Also, we notice that, by CavcaY’s theorem,

-—l—j 27"7'e* dz = the residue of 277 % at the origin =
2w JL 7

1
n!

By making use of the equations (15) in conjunction with this last result we get in
succession on integrating by parts :

j F(zft) .27 dz
' =—1-.ja0z“1e"dz -21 j { gbl(z/t)}e dz,

21t i

o

o [c W It | ).

il

= ao+-—-j' Y (zft) e dz,
= ao+§%—iL{a1£——t Zi—;\pg(z/t)} er dt,
= iyt P = S () Tt 5 | dalele) e s

ot -
= ay+ D Zj U (2)t) . & de,

. . . o . . B o B > .y

o at  ot? a,,t"’ " f .
_a+1'+,5‘_+ n!+§EL¢un+l(z/t).edz,. .. . (16)

each of the terms in square brackets vanishing at both ends of the contour.
We shall now estimate the value of j Y1 (2[t) € dz for any value of n.

At all points on L we have

P,
nl z/z‘ n! z/t ’

[ (#/1)] <

ve.,
[ (/1) | <Ap™y™'+Ba™y™
For brevity we put ’
Ap"y '+ Boy™ =

On the arc of the circle we have

|expz|=exp|yt],
and
dz =|yt|et dw,

where w varies from —im—0 to iw+0.
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Consequently, for the integral round the are,
| s efe) e | < +26) syt ey
On the ray arg z = iw+6, we put
z=|yt|. rexp (dn+6)2,

where r varies from 1 to o; so that for the integral along this ray,

Hgl;,,ﬂ (zft). e dz

<L Uyq cosec O exp {— |yt |sin 0};

and we get the same inequality for the integral along the other ray of L.
Combining our results we get

zﬂk§%ﬁddoech

< 2—]7; [(77+20)y|t{exp['yt[ +2cosect exp { — |'yt]sin0}:] x [A’y”l|ptl”+B7_zl‘7tl”]
(164).

Remembering that p =< o, we see from this formula that, if |¢| < ¢, then

J Y1 (2ft) € dz | >

277@
uniformly as n > co.

That is to say, when |arg t|=A—0 and |t| < o7, we may expand the integral

ZM[F@m,éaw
wn the form

1 j‘ _ agt? at”
— | F(zft).2z7"¢dz = ay+ L+ 2> LI o)
5. (2[t) 0+ +2,+ O,

where Q, >0 as n>oo.
In other words, when |arg t|=\—6 and [¢| < o™, the integral

1 [ -
— | F(eft). 27" dz
2m JL (1) 27" da
represents BorEL'S associated function defined by the series

b (1) = a0+“—1t+%2£' + .
converging when |t/ < p7'; so that BoRrEL's associated function is analytic when
[t <p™
Now the integral 1 [ T g g
omi ). (2ft) .2 e dz

VOL. CCXI.—A. 2 R
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converges when |arg t|=\—@; and by putting z = tu, we find that the integral is an
analytic function® of ¢ in the region |arg t| < A—0.
That is to say, BorEL'S assoctated function ¢ (t) is analytic in the region |t| < p7%,
and also in the region |arg t| < N—0.
&9 (1)
de

We shall require an upper limit for

when |arg ¢| < A—0.

To obtain this upper limit we consider the integral

1 e 2 2 ¢ gl
| == F<—>—a ——a——-—...—-a~———}dz.
211 Lz t”{ ¢ Ty molnl

We may show that it can be expanded in the form

Ayiq Opig 3
Ay, + 11 t+?“t + ...

when [¢| < o7, by replacing F (2/t) in the work immediately preceding by

2" 2 t !
gz {F<2> -—OLO—-(IIE = ees “‘@n_l F}.

Therefore, by the theory of analytic continuation, we have

_l—j‘ ¢ zn{F /715 A tnml} dr = ¢ )

om iz e 1 \¢, 2 1 dt

for all values of |¢| in the interior of the region |arg ¢t| < A—6.

Now
n—1 in
1F <§> -—ao—alg — —a”*lin-l < B.(n-1)! " gl (n > 0)
<A+Balgl . (n=0),
so that
Z” F /Z t tnwl B \ et
i';{ (z —“ao“'alg — eee “'Q/,L_lgn—:i} < . (Yl/"‘1> Lo (n > 0)
< A+ Boy™ (n =0).

Making the substitutions made in obtaining (164), we find that

M K.(n—=D!o" |t ex Oj
Ml <k oteclonle ax0]

[ ()| <K/[e exp|yt] n

i
o

where K, K’ are finite quantities independent of ¢ and .

* This follows, without difficulty, from an obvious modification of the theorem stated by BroMwicH,
“Theory of Infinite Series,” p. 438,


http://rsta.royalsocietypublishing.org/

\

A

A
A \

A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

)

Py
fa \
A A

y i
Y 4

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

MR. G. N. WATSON: A THEORY OF ASYMPTOTIC SERIES. 307

We use the formulee (17) when |t] is greater than, say, +o .

When |t|= 107", since the series for ¢ (t) converges when |t| < p™' (and p =0¢),
we have | ¢ (¢)] < K” where K” 1s finite and independent of ¢.

Also when |t|= (3+3) o7 we have | ¢ ()| < K” where K is finite and independent
of t. :
Accordingly, wheén [t| = o7, we use the formula

CJ"(}S (t) — n! J (g) Olt

R ( t)n+1
1

de 2t
the contour of integration being a circle of radius 3ol
-1
b

Hence we get, when |t|= 1o

1 n o,
clt” ‘<K’ o). nl.

Jombining these results with (17), we see that for all values of ¢ such that either
larg t| < A\—0 or

t|= 407" we have

16(0)] < K, explyt], [<K o) nloxp(|yt]) . . (174)

i dtn

where K, K,, are finite and independent of ¢.
Consequently, if' y, > v, and n is any assigned integer,

1 (t
Lt [exp (=) L2 = o,

if y, > v; and the function ¢ (¢) is analytic in the region in which either of the
inequalities
(L) [t <p™h (i) |arg ¢| < N—4,
1s satisfied.
Now let us study the function

j:qu (t) e dt = F, (2).

The function F (2) is an analytic function of z when R (z) > v, where y, > .
If also R {z exp (—wu)} > v, we can see that

j(—n)Z(ﬁ(t)e"ndt:Fl(z) Coe e e (18)

where w is any quantity such that 0 < u < \—0, p < 1m.
Equation (18) gives the analytic continuation of F, (z) over the whole of the area
for which R {z exp (—iu)} >
Let ¢’ be a small quantity such that 0 < ¢ < p.
2 R 2


http://rsta.royalsocietypublishing.org/

A

a \
=
/ é\:

e

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

\

3

Py

///

AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

308 MR. G. N. WATSON: A THEORY OF ASYMPTOTIC SERIES.
Then F,(2) is certailﬂy analytic in the region (see figure) in which both the
inequalities

£(2)=0 |z > yi cosec (u—0), —r—0'+2u <argz < $m+0,

are satisfied.
In like manner, when

R(z) > yi. R{zexp (?41.)} > Y

we have

[ () di=Fy (o),

and we can deduce that I, (z) is analytic in the region in
which both the inequalities

|2| > v cosec (u—0), —dn—0 <argz <im+0—2p

are satisfied.
That is to say, I, (z) is analytic in the region in which

B {xexp.(-i0)} =),
the inequalities ;
- 2| > 1 cosec (n—0), larg 2| < dw+0,
are satisfied.
Now consider the function F, (z) in the region in which

|z]| > (y:+1) cosec (u—6'), jal?gz(<%7r+0’,
We may define F, (2) in this region by the equation

F (2) = j e,

where the upper sign may be taken if argz =0, and the lower sign if argz=0.
By repeated integration by parts we get

By (2) = [—b () oo+ [-— Mlm T~ L Ml) o ey,

z 2" ¢ (Fu)

z

From the results (174) all the integrated parts vanish at the upper limit ; and we
have .

a
F () = a0+%+.,‘+—;}‘+8n
Z Z
where

[Sa] =

[ #00ey,)
(Fw)

z
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Now y|t| =R (2t) = —|¢] ; and hence from (17A)

82 < Ka(Goy (n )1 | exp(=2])d]e],

< K, (Bo)y* (n+1) L
and K, is independent of n:

But we have |S,| = Ot +8S,.41

n+1

; so that, applying the formula just obtained to

S,+1, we get
1S,z < Ap* (n+ 1)1+ K, (o)t (n+2) .

n+1)(n+2

< K; therefore, since p = o,

But we can find a finite quantity K independent of » such that

. e 7,+1
when 7 is a positive integer ; and a fortiors ——

1S, < K {Ap+K,. 30} (20) . n! < B;.(20)" . 1!, say.

That is to say, if |z]|> (y:+1) cosec (u—@), |arg z| < 4w +6, we have asymptotic
expansions of the form ‘
F () = apt Dok G4 R,, ]
}(19)

a a,
Fi(z) = ap+ 2+ + 248, |
: 2 Z

J
IR, 2" < B.nlo”, S, 2" < By.n!(20)n . . . (194)

where

Taking I =1, and writing 20 for o in Theorem V., we conclude, since the
expansions (19) are valid when |arg z|={m+30' (v.e., for a range of values of arg 2
greater than =), that

F(2) = Fi ().

That is to say, in the region |z|> (y,+1) cosec (u—¢), |arg z| < fm+@, we have
proved that '

F(2) = j o zqs'(t) e~ di.

But j ¢ (t) e7** dt is an analytic function of z when R {z exp (—ipu)} > y,, where
(=1

y: 1s any quantity greater than y; hence, by the theory of analytic continuation, we
have
F(2) = j 2 (1) e di ;
(=
and more generally, if —(A—0) < » < A—6, we have*
F(z) = [ 2 (t) e~ dt, provided R {zexp(—w)} > y.
e

* ¢ (f) is analytic along the ray argt= —v.
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Now draw the circle |z|= yi; and draw the tangents to this circle at

2 =y, exp { +1(A—20)} in the directions of the rays arg z = + {1w+\—20} respectively.

If z be any point to the right of the curve formed by these tangents and the arc of

the circle joining their extremities (see figure), we can find a real quantity » such
that |v| < A—0, and such that

R {zexp (—w)} > 7.
For such a value of z we have “ gsammed” F (z) by the equation
which we have just proved, viz.: A

F(2) = j b (n)e de

(=

In other words, we have shown that ¥ (z) is summable by means
of an wntegral of the same nature as BoREL'S integral.*
Returning to the equations at the beginning of the section,

e=wexp {—3(a+B)i},  f(x)=F()

we see that f(z) is summable by an integral of the same nature as
Borgr’s integral ; the formal result is hardly worth writing down,

since it usually happens that & = —8, so that z = .

10. We may also show, by the methods of Section 9, that if we are given a

function ¢ (¢) defined by the series
N it agl?
(i)(é) = ao+—1—! +_2_T + ...,

where |a,| < A.n!p", and if ¢ (£) have no singularities in the region |arg ¢|=< \, and it
when |arg ¢|=\, [¢(¢)| < Kexp {y|t|}, where K is a constant, then the function
I (2) defined by the equation

F(o) = ap(e

has an asymptotic expansion in powers of 1/z valid when |arg 2| < $m+\—8@ (where
¢ > 0), provided that be sufficiently large ; and that unity is a grade and outer
grade of the expansion, and p is a radius.
For, when |arg ¢|=\—0, we have
nl [ $(£)
S PN(l) = — d
¢ ( ) szj(g_t)n'i‘l E’

the contour being a circle ot radius p,™sin 6, where p, > p; assuming that when
lt|=p. (¢ (2)] < K, we find without difficulty that

L (O] < 0t K[exp {y|t| +yp, " sin 8} ] {p, cosec 0}".
P YP

2

* From the results proved concerning ¢ (f) it follows that F (2) is *“ absolutely summable.”
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Now suppose that we can find a real quantity v such that |v|=\-0,
R {zexp (—w)} > y+1; then we may write

F(z) = j' 2 (t) e di;
(=»)
and, on integrating by parts, we get

: (n+1) -2t
F(z)=a0+%l+...+g;}+[ (ﬂ-ﬂ—e;«(lt,
J(=v)

2 2"
1.e.,
F (z) = “°+%1 +...+g§ +R,,
where
IR*| < (n+1)!1 K {exp (yp, ™ sin 6)} {py cosec 0}" j(_u) exp {—|t]}d]t],
1.e., _
|R,2"| < (n+1)! K/ (p, cosec 6)", where K’ is finite.
Now
R R
so that

[R,| < {Ap™*'. (n+1)! + (n+2)! K/ (p, cosec 0)"} |z| .
If p, > pi, we have
prin+t1) <K'pt,  pi"(nt1) (n+2) < Kpy,

where K”, K" are finite and independent of .

Therefore
|R.| < B(pscosec 0)* . n!|z| "L

That is to say, for values of 2 such that
R {zexp (—w)} > y+1,

where |v| is less than or equal to A—f, F (z) has an asymptotic expansion with
grades equal to unity, a radius p, and an outer radius p, cosec 8, where p, is any
quantity greater than p. This is, effectively, the result stated at the beginning of
the section. ;

11. We shall conclude by investigating the characteristics of the asymptotic
expansion of a function connected with the *logarithmic integral,” or “%” function,
defined by the equation

® =t

€ dt.
t

li () = j

x
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When @ is real and positive it is known that*

exli(e_z)zé-——l_’,{-:_}_ +( )n—~ (nfnl)!—-‘“Rm

where |R,| <nlaxz ™ .
Thus, when « is real and positive, e¢*ls’(e™*) has an asymptotic expanswn of which
characteristics are

<f/jd iC = 1, P = 1,
- =1, =1
<> )
@) : Suppose that 2 is complex, but not a real negative quantity. Then we may prove
m —_ that
2] P
58 & li () = j v
— T+
-l N — ” —v _1___2 n—1 /Un 11 d ["’ _?) e
§% Le {w x2+"'+( ) o=y " (m+v)
gs ! so that
<0 x -z 1 17 - 1 !
52 ?lb((ﬂ )—':%““a?“‘}“..-”{“( ) 1( ) ,;,
EE where ) o
Rl=| 0e
‘ l b |$n(.%'+'v)lcv
If R (z) = 0, on the path of integration |z+v|=|xz|.
If R(x) =0, then |x+v|=|I(x)]|.
Thus, if R (x)=0,
IR,|=|e| ™ j vre do = || . al.
Whereas, 1f
P ir=largz|=irta (2 < m),
T we have
__f\” [T (z)|=]|x|cos a,
< so that
SE |R,|=seca.|z]|™ " al.
=
515 Thl.lS, if |arg x]s .%71'4— a, the function e*li(¢™*) possesses an asymptotic expansion
anf@) of which characteristics and constants are
= w
k = ]., p = .]., =
l=1, o=1, B=1 or seca,

the value unity being taken for B if |arg |= {m.

PHILOSOPHICAL
TRANSACTIONS
OF

* WHITTAKER, « Modern Analysis,’ § 87.
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‘Other functions which may be investigated in a similar manner are to be found in
Bromwica’s ¢ Theory of Infinite Series,” pp. 351-352.

The investigation of the characteristics of asymptotic series representing functions
defined by integrals of types essentially different from BoREL's type is to be found in
the paper by the writer, cited on p. 282.

12. Finally, it may be stated that it is possible to conceive a function which has an

asymptotic expansion
g+ B4+ D4R,
x x
. @
wherein, as n >, |a,| increases more rapidly than any expression of the form
AT (kn+1) p*; such an expansion would be obtained by taking a, = G (n+1) where
G (n) 1s BARNES' G-function. But such series have not yet occurred in analysis, and
they do not appear to possess the interesting properties of series with finite

characteristics.
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